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Abstract:
dimensional, single-crystal X-ray diffraction techniques.

metal-to-chlorine bonds and one =-type metal ion-aromatic interaction.

A new benzene complex, C¢Hs- CuAlCl,, has been synthesized and its structure determined by three-
Cu(l) is in a distorted tetrahedral environment with three

The three Cu-Cl (2.365, 2.398, and 2.555

A, all =0.006 A) interactions are made with different AICI, ~ tetrahedra in such a way that a pleated sheet of CuAICI,~
is formed with Cu—CgHj linkages protruding from the sheet. The sheets are separated by normal van der Waals

distances.
and 2.30 A, both £=0.03 A.

he existence of complexes between silver ions and

olefins or aromatic donors has been known for
some time.? Mulliken® and Dewar* have formulated
theoretical models for the bonding in these complexes.
Single-crystal X-ray structure investigations of silver
(D)-olefin®~" complexes and CiHs-AgClO2 have been
carried out and the geometry and bond distances es-
tablished. However, a thorough understanding of the
factors involved in metal ion-olefin or aromatic com-
plexes can be obtained only from a systematic study of
complexes with various metal ions, anions, and a
number of donors. Baenziger and his co-workers®
have examined a number of olefin complexes, and we are
examining a number of metal-ion aromatic complexes.
A preliminary communication has been published on
Ce¢Hs- CuAICL® and we now present synthetic and
structure details.

Experimental Section

CsH - CuAlCl; was prepared by treating a slight excess of re-
sublimed CuCl with 0.03 mole of resublimed AICl; contained in
easily broken Pyrex ampoules with an excess of dried benzene (20
ml) in one side of a dry evacuated H tube (Figure 1).

Upon breaking the tubes, the closed system was heated for 2 hr
at 40° by immersing the two legs in dewars filled with warm water.
Any HCI formed from residual water adsorbed on the vessel walls
was pumped out; then the stopcock was sealed off. Since CuCl is
insoluble in benzene, the solution of C¢Hg: CuAlCl,in the left leg was
filtered into the right leg. Single crystals were grown from the
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The Cu(l) is located almost directly above a C-C bond of the benzene ring with Cu~C distances of 2.15
It appears that the anions play an important role in the stability of this complex.

concentrated solution in the right leg by immersing the left leg in a
Dry Ice-acetone bath. After excess benzene had been removed, the
lower part of the right leg was cut off; this segment was transferred
to a small drybox wherein single crystals were transferred to thin-
walled (0.01 mm) glass capillaries. The glass capillaries were
sealed off with a torch. The crystals were found to be very sensi-
tive to air and moisture, and it was difficult to avoid some decom-
position. Chemical analyses were performed, but they were only
sufficiently accurate to confirm the above stoichiometry.

The crystal of approximately 0.3 X 0.3 X 0.6 mm was used for
collecting the intensity data. Multiple film equiinclination Weissen-
berg techniques were used to collect 1200 independent Ak! ob-
served intensities with Zr-filtered Mo Ke radiation from #hkO,
hkl, ..., hk6 levels. In addition, #0/ and Ok/ precession-timed
exposure intensity data were collected with Zr-filtered Mo Kea
radiation and used for preliminary scaling purposes. All intensi-
ties were visually estimated with a calibrated strip. The linear
absorption coefficient (u) for this compound is 32 cm~! with Mo Kea
radiation. Since no adsorption correction could be made for
unavoidable surface decomposition, no absorption corrections were
made.

Calculations were made with an IBM 7094 computer at New York
University.!! Lorentz polarization corrections were made and
intensities reduced to squared structure factors. Fourier calcula-
tions were made with the Sly-Shoemaker-Van den Hende program.
The full-matrix least-squares refinement was carried out using the
Busing and Levy oOr rLs program with the Hughes!? weighting
scheme with 4F i = 10. We minimized the function Ew(F, —
F)? Atomic scattering factors were taken from the compilation
of Ibers!d for Cu*, Cl—, Al*3, and neutral C. The variables were
scale factors, atomic coordinates, and individual atom temperature
factors for the isotropic refinement. For the anisotropic refine-
ment, the variables were the six 8;; for each atom along with the
atomic positional coordinates. The anisotropic temperature fac-
tors were of the form exp [—(Bnh? + Bnk? 4+ Bl + 2B1hk +
2Bkl + 2Bs3kD].  The scale factors were fixed after the isotropic
refinement and not allowed to vary further until the refinement was
completed.

Results

Unit Cell and Space Group. C¢H¢ CuAlCl; was
found to crystallize with four formula units per cell in the
monoclinic crystal system. With CuKe(1.5405 A)
ae-(1.5443 A), unit cell constants were found to be ¢ =
8.59 = 001, 5 = 21.59 = 0.03, ¢ = 6.07 = 0.01 A,
and 8 = 93° 0’ = 15/, The systematic extinctions of
(for KOy h 4+ I = 2n + 1 and (for 0kO) k = 2n + 1
uniquely specify the space group as P2;/n. The cal-
culated crystal density was found to be 1.85 g cm—3
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Table 1. Observed and Calculated Structure Factors F(C) = 10F(Calcd)
)0 3K1 6K 1 22 ~5%2 ~2K3 6K 3 2Kk ~b6Kl -3 -2K5
Fé% FICL o 81 15 7 [ee 108 1 91 73 5 231 236 11 105 76 2 233 312 1 140 132 7 157 132 9 95 =136 7 158 126 8 111 74
o 297 259 10 53 168 & lel =135 2 393 79 & 171 -185"14 166 =167 3 387 403 2 7s 58 B 186 181 14 60 68 9 98 -80 9 101 -4>
8 415 ~44t lé 91 =99 10 128 111 37214 =219 7 184 =214 16 87 96 & 179 -167 3 223 22910 112 116 K6 12 127 -92 10 129 =97
12 159 156 18 105  S6 11 185 181 4 205 =213 8 192 186 17 72 60 5 268 =328 & 53 -31y5 133 135 1 Sy =7214 126 6l 11 14l -139
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20 118 -111 8K0 14 7C 71 7 130 991C 174 =155 6K2 @ 233 231 7 76 8413 128 128 & 182 190  4KS 15 131 ~114
146 L 118 -102 17 82 =89 B 143 le&12 81 T6¢ 2 127 =107 9 132 135 8 T8 5614 112 113 3 103 =93 1 35 -lo ls 189 -188
5 213 256 3 54 46 18 Th =85 9 74 =5613 lu6 =207 & 162 16C 10 271 =287 9 191 ~15316 168 ~183 T 160 128 2 74 6 | KO
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10 115 128 5 75 ~134 0 331 =396¢13 90 73 -2k2 9 99 B4 13 63 3014 62 -85 2 176 lo4 “ThG 12 161 103 2 SO0 oY
11 157 153 7 86 =122 1 240 =262 15 103 =104 3 168 =154 10 87 57 14 51 5425 &l 17 3 27¢ 286 5 97 -12113 44 63 o 20 O
12 183 =192 166 119 2 292 35016 1G1 =1€0 4 141 1CC 12 70 61 15 155 166 =63 “ 136 =132 6 80 =9515 47 =43
1 - 3 -68 16 117 =165 1 123 8O 5 8 153 156 <45 9 245 262
13 111 9% 12 104 =116 3 200 165 7K1 6 49 =25 13 97 =68 1 5 150 =132 VN -s 10 50 =55
le 43  3C 13 90 =-87 @ 132 56 0 (0C =94 7 52 28 14 117 ~143 18 80 58 2 63 5T 6 117 IC9 10 B84 =89 2 117 -58 12 31 -he
15 4% -44 146 91 90 & 317 =3¢7 1 95 70 6 129 133  =-6K2 19 76 -8 3 240 ~281 7 158 ~161 gr4 3 20 -4713 133 <106
16 102 90 9% 0 7 134 =101 » 108 98 9 126 =123 1 202 229 3K3 ¢ 79 -T3 @ g -50 O 74 =83 0 0 U0 100 1ss
13 87 68 2 96 -89 8 123 92 4 56 =351C 111 104 & 82 =4l 0 147 =132 5 153 149 g 136 134 =8Ke 3 [0 ORI 44
18 5S¢ -37 3 79 13 ¢ 222 220 5 85 7611 15C 129 7 92 73 1 222-210 6 53 =531y 1p5 -131 0 2¢1 =290 0 5 L0 fog
20 105 1le & 86 6T 11 196 =179 ¢ 93 =5712 182 =19C 9 léb =126 2 &9 =53 T 113 18715 216 252 2 103 173 0 05 o
51 7¢ -73 8 59 =62 )2 125 =116 8 126 11717 106 -114 11 82 =-8c & 129 111 8 89 7520 70 sl 4 60 sl 02 e [t
2k¢ oK1 13 79 -65 1¢ 130 =12318 120 =112 18 106 75 5 109 49 9 211 ~21722 s =9 & &6l <8232 a4 0 2 221 -189
2 158 113 6 274 259 14 130 102 12 52 5520 15> 148 19 9 145 6 110 ~10410 141 =128  ~3x4 8 88 107 e 3111 97
" ) g T 298 34315 87 7013 105 =105 3K2 ke 7 164 ~11811 164 163 | 76 =58 9 109 121 7 . 4 3ls 36
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o 167 ~146 8 L71 =168 16 146 164 14 62 69 | 155 =123 2 195 ~221 8 8> 7112 76 T4 ¢ 236 224 K R T T4 lg; -_5113
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72 14 13 =7521 7T 100 2 6 184 165 10 111 103 14 95 103 1 o  T81p 225 -19¢ -1
9 9l 2 ; 7 -103% -7 7 6 1 134 176 8 115 =106 1 133 50
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13 59 ~e5 =241 -5K1 1113 -3l T2 11a -se b (S8 _ 4713130 115 704 10213 120 -961C 107 =99
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8 73 —e3 3 96 %0 4 180 =167 § 15y .46 5 176 =159 § g6 156 & 157 =131 7 126 8%
in good agreement with the observed value of 1.86 g Determination of the Structure. After two false

cm—3,

starts with the three-dimensional Patterson function,
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Table II=
Positional and Temperature Parameters and Errors
Atom x/a o(x)/a y/b a(y)/b z/c a(2)/c
Cu 0.1790 0.0004 0.1703 0.0001 0.0043 0.0004
Cl (1) 0.2319 0.0007 0.2838 0.0002 0.1031 0.0007
Cl(2) 0.3810 0.0009 0.4318 0.0003 0.0692 0.0012
Cl(3) 0.4200 0.0006 0.3270 0.0003 0.6351 0.0006
Cl (4) 0.1381 0.0006 0.1921 0.0002 0.6237 0.0006
Al 0.4145 0.0006 0.3398 0.0002 0.9839 0.0007
C(1) 0.4732 0.0037 0.0896 0.0016 0.8261 0.0053
C(2) 0.4833 0.0032 0.1255 0.0014 0.9892 0.0046
C(3) 0.3789 0.0047 0.1229 0.0019 0.1602 0.0066
C(4) 0.2789 0.0035 0.0796 0.0017 0.1541 0.0051
C(5) 0.2605 0.0035 0.0403 0.0019 0.9699 0.0059
C(6) 0.3606 0.0038 0.0442 0.0013 0.8187 0.0038
Thermal Parameters and Standard Deviations
{ Anisotropic temperature factors of the form
expl—(Buh? + Buk? + Busl? + 2Brhk + 2Bkl + 2Bukl)]; ¢’ = ¢ X 104}
Atome Bu o Be o’ Bas o’ Bra ¢’ Bis a’ B2s o’
Cu 0.0090 6 0.0020 1 0.0140 11 0.0024 2 —0.0004 5 0.0015 2
Cl(1) 0.0085 7 0.0005 1 0.0119 12 —0.0013 2 0.0067 8 —0.0014 3
Cl(2) 0.0131 13 0.0002 1 0.0353 23 0.0003 3 0.0070 12 —0.0003 4
CI(3) 0.0027 7 0.0029 2 0.0007 11 —0.0003 3 0.0000 5 0.0000 3
Cl(4) 0.0044 7 0.0015 1 0.0017 10 —0.0015 2 —0.0008 5 0.0000 2
Al 0.0014 8 0.0001 1 0.0016 13 —0.0001 2 0.0001 7 0.0001 2
C(1) 0.0075 43 0.0023 9 0.0358 94 0.0013 18 0.0141 38 0.0008 21
C(2) 0.0071 40 0.0014 10 0.0272 89 0.0000 13 —0.0067 40 0.0042 16
C(3) 0.0165 63 0.0027 11 0.0437 121 0.0026 20 —0.0205 50 —0.0007 29
C@4) 0.0052 46 0.0025 9 0.0323 106 0.0017 17 0.0003 47 —0.0012 24
C(5) 0.0056 45 0.0038 9 0.0443 96 —0.0005 15 —0.0024 46 0.0122 17
C(6) 0.0167 61 0.0012 7 0.0131 64 0.0033 16 —0.0032 43 —0.0005 15
Layer Scale factor o
hkO 0.2321 0.0043
hk1 0.3130 0.0036
hk2 0.3616 0.0042
hk3 0.2923 0.0038
hk4 0.4801 0.0063
hk5 0.3589 0.0059
hk6 0.5427 0.0085

e To put structure factors on an absolute scale, F(C) should be multiplied by 1/(scale factors),

numbers in other tables and drawings.

the correct solution was found. The Cu, 4Cl, and Al
atoms were all located in the general positions of
P2y/n: =(x,y,z; Yo+ x,Y2o—p, Y2+ 2).

The disagreement index R (R = Z||F,| — |F.|/
Z|F,|) with the coordinates of the heavy atoms from
the three-dimensional Patterson function was found
to be 0.28. A three-dimensional electron density
calculation with phases based on only Cu, Cl, and Al
positions located the carbon atoms of the aromatic
ring. After six cycles of full-matrix least squares with
individual atom isotropic temperature factors of the
form exp[—(sin? AA—?)], R was found to be 0.19. After
eight cycles of full-matrix least squares with individual
atom anisotropic temperature factors, R converged to
0.139. The maximum shift of positional coordinates
for the last cycle was 0.00002 of the cell edges. A
three-dimensional difference map did not indicate any
unusual features. The final calculated and observed
structure factors are listed in Table I. Final atomic
parameters and standard deviations are tabulated in
Table II. Interatomic distances, angles, and errors!4
are listed in Table III. The equation for the best
least-squares plane through the benzene ring carbons
and the deviations of each atom from this plane are
also given in Table III. 15

(14) W. R. Busing, K. O. Martin, and H. A. Levy, OR FFE program.
(15) Program courtesy of L. Dahl,

Numbers in parentheses refer to subscripted

Since the intensity data were only taken about one
axis and no corrections were made for absorption,
anomalous dispersion, or extinction, no physical inter-
pretation should be made of the anisotropic temperature
factors, For these same reasons our estimates of error
may be somewhat optimistic.
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Figure 1. H tube for preparation of metal ion~benzene complexes.

Description of the Structure. The structure is made
up of sheets pleated about y = /4, 3/4 or infinite ex-
tent in the a and ¢ directions. These sheets are com-
posed of distorted tetrahedral Cu(I) bonded to chlorine
atoms of three different AICl,~ species. For example
(Figure 2), Cu*, z ~ l/oc is bonded to Cli* and Cl;*

Turner, Amma | CeHgy CuAlCI,
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Table I11. Distances and Angles for CéHg - CuAlCl,

Bonded Distances and Angles

Al-ClL 2.136 = 0.007 A Cu-Cl; 2.555 £ 0.066 A Cu-C; 2.154+0.03 A
Al-Cl, 2.078 = 0.008 A Cu-Cl; 2.398 &= 0.006 A Cu-C, 2.30+=0.03 A
Al-Cl; 2.141 £ 0.C07 A Cu-Cl, 2.365 == 0.004 A Cu-midpoint 2134+ 0.03 A
Al-Cl, 2.153 = 0.007 A (C:—Cy)
Cl-Al-Cl, 109.9 4= 0.3° C-G, 1.25+0.04 A C-Co-C; 123 == 3°
CL-Al-Cl, 109.0 &= 0.2° Co—Cy 1.41 =005A C-Ci-Cy 119 =+ 3°
Cl-Al-Cl, 109.4 4= 0.3° C,-C, 1.26+0.05A CCC; 121 + 3°
Cly~Al-Cl, 112.4 4= 0.37 Cs-C; 1.40 =005 A C—Ci-C 119 = 3°
Cl:-Al-Cl, 109.9 == 0.3° Ci—Cq 1.29 =0.04 A Ci—CeCy 121 + 3°
Cls-Al-Cly 107.7 = 0.3° CeCi 1.37 004 A Ce—Ci1-Cs 119 + 3°
Cu-Cl-Al 125.8 &= 0.2° Midpoint of C3-Cs+~Cu-Cl; 118.1 = 0.5°
Cu-Cl-Al 113.8 = 0.2° Midpoint of C3-C,~Cu-Cl, 114.3 &= 0.5°
Cu-Cls-Al 113.1 &= 0.2° Midpoint of C;-C~Cu-Cl; 127.6 &= 0.5°
Cl,-Cu-Cl; 92.9 = 0.2° C,-Cu-C, 3317
Cl,-Cu-Cl, 92.9 £ 0.2° C—C;—Cu 97 £ 1°
Cl3-Cu-Cl, 101.7 &= 0.2° Ce—Cs—Cu 94 £ 1°
Nonbonded Intermolecular Distances (A)

CL-Cl, 3.639 4= 0.006 C-Cl 3.81 =0.03 C-C; 4.13 £ 0.05
-, 3.571 = 0.006 C—ClL 3.80 = 0.02 C-C, 4.31 =0.04
Cl—Cly 4.113 =+ 0.009 Ci—Cl 3.66 = 0.02 C,—Cs 4.36 = 0.05
Cl;-Cly 3.776 &= 0.008 C-Cl, 3.74 = 0.03 Ci—Cq 4.12 £ 0.03
All others >4.5 Ci—Ch 3.70 = 0.03 All others >4.5

C-Cl, 3.66 == 0.02

C—Ch 3.81 = 0.03

C-Cl; 3.85+0.02

All others >3.85
Dihedral Angle between Planes Each Defined by

Nonbonded Intramolecular
Distances (A) and Angles on AICl

Three Atoms for Benzene Ring

ClLi-Cl; 3.451 &= 0.008 Ci—C-Ce 5 &+ 3° CeCi-Cy 1 £ 3°
Cl-Cl, 3.596 = 0.006 CeC;—C, Ci—CCs
Cl,-Cl, 3.501 = 0.008 C—Ci-Ce 2 4 3° CeC-C, 1+ 3°
Cl-Cly 3.465 = 0.008 Ci-C-Cy C-CoCs
Cl-Cl; 3.508 & 0.008 Ce—C-C; 1 £ 3° Ring is planar within
Cl;-Clg 3.427 &= 0.006 C-C-C; experimental error
Equation of Best Least-Squares
Plane through Benzene Ring
—0.6019x + 0.6338y — 0.4859z =
Deviations from This Plane (A)
C, 4-0.006 C, —0.030
C, —0.004 C; +0.035
C; +0.029 Cs —0.013

both at z ~ ?/5c and also to Cl * at z ~ !/15¢c which is on
the AlCl,~ tetrahedron below the one containing Clz*.
The Cl. on the tetrahedron with Cl;* is then bonded to
the Cu atom in the unit cell above. Extension of the
sheet in the [100] direction is generated by the glide
plane at y = '/, The coordination number of 4 for
Cu(l) is completed by a =-type aromatic ring inter-
action (Figure 3). The Cu-Cl interactions with a
particular AICl,~ ion is shown in Figure 4. Inasmuch
as the sum of the tetrahedral single bond covalent
radius of Cu'®t and Cl is 2.34 A, Cu-Cl distances of
2.365, 2.398, and 2.555 A (all =0.006 A) indicate a
substantial Cu-Cl covalent interaction. These dis-
tances are also in good agreement with tabulatedV
Cu(I)»-Cl distances of 2.31-2.48 found in fourfold
coordinated Cu(l) compounds. It is to be noted that
the ““free”” Al-Cl distance is significantly shorter (0.07
A) than the Al-Cl distances, wherein the Cl is also
bonded to a Cu atom. This value of 2.07 A is in good
agreement with the terminal Al-Cl distance found in
AlLClg'® (2.07 A) vapor and the non-Co-bonded Al-Ci
distance in Co(AlICl,),'* (2.10 A). On the other hand,
the remaining Al-Cl distances are the values expected

(16) L. Pauling, “Nature of the Chemical Bond,” 3rd ed, Cornell
University Press, Ithaca, N. Y., 1960, p 246.

(17) H. Ondik and D. Smith, ref 13, p 260.

(18) K. J. Palmer and N. Elliott, J. Am. Chem. Soc., 60, 1852 (1938).

(19) J. A. Ibers, Acta Crys., 15, 967 (1962).
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for externally Cl-coordinated Al-Cl distances, e.g.,
in Co(AlCly)., ~2.15 A. All CI-Cl, CI-C, and C-C
distances between sheets are at least 3.6 A; hence,
only van der Waals interactions exist between sheets.
The aromatic ring is bound to only one Cu(I) atom, and
the rings are back-to-back. The neighborhood of a
particular Cu(I) species with bond distances, angles, and
errors is shown in Figure 5. Since a value of 2.12 A is
expected for a Cu-C “‘single”” bond, the Cu-C closest
distances of 2.15 and 2.30 A are indicative of a
strong interaction. The distance of Cu to the center of
the nearest C-C bond was found to be 2.13 A.

Discussion

Mulliken?® considered the use of the empty 5s orbital
of silver as the electron acceptor and the e, filled molec-
ular orbital of benzene as the donor. In addition, he
considered the use of excited states of Ag(l) of the
proper symmetry to give a possible Cs complex but
rejected them on energetic grounds. Dewar‘ main-
tained that not only is the e; — 5s interaction important
but the use of a filled d orbital donating electrons to the
empty e, molecular orbital is also important to the
binding. This latter interaction, back bonding, is
generally accepted as being important in platinum(II)-
olefin complexes. Either or both of these interactions
led to the correct gross geometry for the crystalline
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Figure 2. View of the C¢Hg» CuAlCl, sheet structure down the ¢
axis. Dotted lines represent nearest neighbor Cu-X interactions.
Dot-dash line represents » glide at y = 1!/,, Cu* at z ~ s
Cli* at z ~ 2/3¢; Clg* at z ~ 2/3e; Cl* at z ~ e, and ¢ =
6.07 A. Cl; and Cl;* are in reality superposed, but they are dis-
placed here for clarity.

[TyeRT)

Figure 3. Local geometry around Cu(I) indicating the “x
nature of the complex.

C¢Hg-AgClO, complex,® and they also correctly pre-
dict the gross features of the Cu(I)-C¢H; bonding in
C¢Hg-CuAlCl,, i.e., the metal ion above and approx-
imately between two C-C bonds of the benzene ring.
Although the C¢Hg-AgClO, complex is not a 1:1
metal-aromatic complex as predicted by the theory but
rather « :« and each Ag(l) is bonded to two benzene
rings, the Ag-O distances are sufficiently long (2.70 A)
that the neglect of cation—anion interactions seems
reasonable and the theoretical framework is justified.
However, in our present investigation the Cu-Cl
interactions are far from negligible and must contribute
substantially to the stability of the complex.

The excited states of Ag(I) that could be used as
acceptors for complex formation are ~4 ev above the
ground state, but in Cu(l) the lowest-energy excited
state is only 1.5 ev® above the ground state. Whether
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Figure 4. Bond lengths and bonding about a particular AICl,~

species. Dotted lines indicate Cu-Cl interactions.

92.9202°9
555 % 008 [

1.4\0 .05

Figure 5. Bond lengths, angles, and errors about a particular Cu(I)
atom.

this excited state plays a significant role in complex
formation is difficult to decide since the true symmetry of
the Cu(I) environment is low. We prefer to describe
the Cu(I) as a distorted tetrahedron with an sp?-
hybrid orbital acting as an acceptor for the aromatic
electrons (see Cl-Cu-Cl and midpoint C,;-C,~Cu-Cl
angles). Since some of the angles are <109°, an
alternative description might be to consider the Cu—-Cl
bonds as made up from Cu 4p orbitals and the 4s orbital
being used as an acceptor.

The Cu-C distances are worthy of attention, par-
ticularly since a Cu-C single bond length!¢ would be
2.12 A, and we observe distances of 2.15 and 2.30 A.
This indicates a substantial metal ion—aromatic inter-
action in comparison with the shortest Ag—C distance,
2.5 A (~1 A > sum of covalent radii), in C¢Hg- AgCIO,
and C¢Hg-AgAICl,. This is in accord with gross ob-
servations that it is more difficult to remove benzene
from C¢Hs-CuAlCly than from C¢Hg AgClO, or
CsHe-AgAICl,. 2t Unfortunately, the error of =+0.03
A makes the difference of 0.15-A Cu-C distances only
five standard deviations. We believe this is a real
difference in bond lengths, because not only is it greater
than three standard deviations, but also it is consistent
with similar results found in C¢H¢-AgClO, and in

(20) C.E. Moore, “Atomic Energy Levels,” Vol. II, No. 467, National

Bureau of Standards, Washington 25, D. C,, 1952, p 112,
(21) R. W. Turner and E, L. Amma, to be published.
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CeHe-AgClAlL 2! In the former, this asymmetry
mani“estzd itself in statistically disordered Ag positions,
but it is unambiguous in the latter. It is not likely
that molecular packing would be the cause of this
asymmetly in metal-carbon distances, because the
the packing is quite different in C;Hs-AgClO,, CeH,-
CuA.Cly and C¢Hg-AgAICi,. A similar asymmetry in
Cu~C distances has been observed in a copper(I)-
olefin complex.*

We suggest that this asymmetry between the closest
carbon-to-metal distances is a fundamental property of
metal ion-aromatic complexes. Further, we suggest
that the reason for this asymmetry is a compromise
between the acceptor properties of the metal ion, or
coordinated metal ion, and the donor propertics of this
same ion. That is, if the acceptor orbital were a 4s-
or an sp®hybrid orbital, the most advantageous posi-
tion would be at the point of greatest electron density of
the ring, directly above one of the carbon atoms. On
the othcr hand, using inner d orbitals for the metal ion as
donor, the most likely position would be above and
symmetrically between two carbon atoms of the aro-
matic system. Hence, a compromise between these

two effects is reached and unequal metal-carbon dis-
tances result. However, in platinum— and palladium—
olefin complexes, there has been no evidence for dif-
ferent metal-to-carbon distances, but it is quite likely
that details of the bonding may be quite different for
olefin complexes.

Although the bond distances alternate in lengths
around the ring and suggest a cyclohexatriene system,
the errors are sufficiently large that this variation of
bond distances may not be real and caution should be
applied to any interpretations based on C-C distances
in this complex.

It is, in fact, an interesting question as to why the
complex forms at all. In the presence of chlorine
donors it is surprising tht the metal-aromatic bond is
preferred to M-CI interactions. The answer may be
that in the packing of anhydrous CuAlCl, large voids
remain, and it becomes energetically favorable to form
metal ion-aromatic bonds over metal ion-chlorine
bonds. We plan to investigate the crystal structure of
anhydrous CuAlCl, in the near future.
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Abstract:

02139,

The preparaticn and molecular structure of Re;Bri(AsO.).(DMSO);, a representative member of the new

class of compounds Re;Xs(MO; o 4):L, arediscussed.  From the visible spectrum, it is apparent that the trirhenium-
(I31) metal atom cluster cccurs in this compound. Further insights into its structure are obtained from a detailed
analysis of the infrared spectrum. Apparently, two tridentate arsenate ions have replaced the six axial halide ions

in the Re;Bry molecule to form a cage which incorporates the cluster.

to occupy nonbridging equatorial sites in the cluster.

he existence of the trirhenium(III) metal atom
cluster in complexes prepared from rhenium(III)
chloride and rhenium(III) bromide has been well
established.3=11 Studies by Robinson and Fergusson'!
have shown that, of the twelve halogen atoms (six

(1) Supported by the U. S. Atomic Energy Commission,

(2) National Science Foundation Postdoctoral Fellow, 1965-1966.

(3) J. A. Bertrand, F. A. Cotton, and W, A, Dollase, J. Am. Chem,
Soc., 85, 1349 (1963); Inorg. Chem., 2, 1106 (1963).

(4) W. T. Robinson, J. E. Fergusson, and B. R. Penfold, Proc. Chem.
Soc., 116 (1963).

(5) 1. E. Fergusson, B. R, Penfold, and W. T. Robinson, Nature, 201,
181, (1964).

(6) F. A. Cotton and J. T. Mague, Inorg. Chem., 3, 1094 (1964).

(7) F. A. Cotton and J. T. Maguie, ibid., 3, 1402 (1964).

(8) F. A. Cotton and S. J. Lippard, ibid., 4, 59 (1965).

(9) F. A. Cotton and S. J. Lippard, J. Am. Chem. Soc., 86, 4497
1964).
¢ (10; F. A. Cotton, S. J. Lippard, and J. T. Mague, Inorg. Chem., 4,
508 (1965).

(11) B. H. Robinson and J. E. Fergusson, J. Chem, Soc., 5683 (1964).
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The solvent (DMSO) molecules are thought

axial, three equatorial bridging, and three equatorial
nonbridging) in the Re;Xq,*~ ion, only three, presum-
ably the equatorial bridging ones, are not subject to
exchange with thiocyanate or radioactively labeled
halide ions.  Apparently, then, the stable siructural
unit in the trirhenium(IIl) metal atom cluster com-
pounds is the Re;X; group ().

From the known geometry (c¢f. ref 3-8) and net
charge (+6) of 1, it seemed likely to us that anions such



